TECHNOLOGICAL ADVANCEMENTS IN THE HEALTHCARE DOMAIN

  • Güler Kalem Department of Software Engineering, Atılım University, Turkey
  • Çiğdem Turhan Department of Software Engineering, Atılım University, Turkey
Keywords: Healthcare applications, mobile devices, wearable technology, disease management, personal healthcare.

Abstract

Improvements on technological devices have affected many areas of life. In recent years, the usage of mobile phones and devices have increased rapidly with the enhancement of internet accesibility and decline in the prices of internet usage. Promising technological advancements and newly developed applications in the healthcare domain aim to make life easier, which are mainly utilized for personal healthcare, disease management, tracking patient behaviour and providing easier and more flexible ways for communication between physicians and patients. In this study, some of the existing applications that are developed for the healthcare domain are reviewed and their working principles are investigated.

Downloads

Download data is not yet available.

References

G. Kalem and Ç. Turhan, "Mobile Technology Applications In The Healthcare Industry For Disease Management And Wellness", Procedia - Social and Behavioral Sciences, 195, Istanbul, Turkey, 2015, pp. 2014-2018.

G. Kalem and Ç. Turhan, "Sağlık Sektöründe Mobil Teknoloji Uygulamaları", TBD 32. Ulusal Bilişim Kurultayı (BİLİŞİM’2015), Ankara, Turkey, 2015, pp. 14-17.

V. Atluri, S. Rao, T. Rajah, J. Schneider, M. Thibaut, S. Varanasi, and S. Velamoor. (April 2015). Unlocking digital health: Opportunities for the mobile value chain, Telecommunications, Media, and Technology [Online]. Available: www.mckinsey.com, date of visit: 05.11.2015.

G. Kalem and Ç. Turhan, "Fiziksel Aktivite Tanıma Sistemi", TBD 33. Ulusal Bilişim Kurultayı (BİLİŞİM’2016), Ankara, Turkey, 2016, pp. 49-54.

G. Kalem, "An Intelligent System for Exercise Planning and Physical Activity Recognition using Mobile Technologies", Ph.D. dissertation, Dept. Software Eng., Atılım Univ., Ankara, Turkey, 2017.

H. Martin, A. M. Bernardos, J. Iglesias, and J. R. Casar, "Activity logging using lightweight classification techniques in mobile devices", Pers Ubiquit Comput, 17, 2013, pp. 675-695, DOI 10.1007/s00779-012-0515-4.

F. Buttussi and L. Chittaro, "MOPET: A context-aware and user-adaptive wearable system for fitness training", Artificial Intelligence in Medicine, 42, 2008, pp. 153-163.

A. Lymberis and S. Olsson, "Intelligent Biomedical Clothing for Personal Health and Disease Management: State of the Art and Future Vision", Telemedicine Journal and e-Health, vol. 9, number 4, 2003.

E. I. Georga, V. C. Protopappas, C. V. Bellos, and D. I. Fotiadis, "Wearable systems and mobile applications for diabetes disease management", Health Technology (2014), 4:, 2014, pp. 101-112, DOI: 10.1007/s12553-014-0082-y.

] K. Patrick, S. J. Marshall, E. P. Davila, J. K. Kolodziejczyk, J. H. Fowler, K. J. Calfas, J. S. Huang, C. L. Rock, W. G. Griswold, A. Gupta, G. Merchant, G. J. Norman, F. Raab, M. C. Donohue, B. J. Fogg, and T. N. Robinson, "Design and implementation of a randomized controlled social and mobile weight loss trial for young adults (project SMART)", Contemporary Clinical Trials 37 (2014), 2014, pp. 10-18. http://dx.doi.org/10.1016/j.cct.2013.11.001.

L. E. Burke, M. A. Styn, S. M. Sereika, M. B. Conroy, L. Ye, K. Glanz, M. A. Sevick, and L. J. Ewing, "Using mHealth Technology to Enhance Self-Monitoring for Weight Loss A Randomized Trial", American Journal of Preventive Medicine, Published by Elsevier Inc, Am J Prev Med 2012;43(1):, 2012, pp. 20-26, http://dx.doi.org/10.1016/j.amepre.2012.03.016.

G. Chetty, M. White and F. Akther, "Smart Phone Based Data Mining For Human Activity Recognition", International Conference on Information and Communication Technologies (ICICT 2014), Procedia Computer Science 46 (2015), 2015, pp. 1181-1187, DOI: 10.1016/j.procs.2015.01.031.

S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava, "Using Mobile Phones to Determine Transportation Modes", ACM Transactions on Sensor Networks, vol. 6, No. 2, Article 13, February 2010, ACM: 1550-4859/2010/02 - ART13, DOI: 10.1145/1689239.1689243, http://doi.acm.org/10.1145/1689239.1689243.

E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S. B. Eisenman, X. Zheng, and A. T. Campbell, "Sensing Meets Mobile Social Networks: The Design, Implementation and Evaluation of the CenceMe Application", SenSys’08, November 5-7, 2008, 2008, Raleigh, North Carolina, USA. ACM 978-1-59593-990-6/08/11.

Y. Zheng, Q. Li, Y. Chen, X. Xie, and W. Ma, "Understanding mobility based on GPS data", Ubiquitous Computing. ACM New York, 2008, pp. 312-321.

T. Sohn, A. Varshavsky, A. Lamarca, M. Chen, T. Choudhury, I. Smith, S. Consolvo, J. Hightower, W. Griswold, and E. De Lara, "Mobility detection using everyday GSM traces", Lecture Notes in Computer Science, vol. 4206, 2006, Springer-Verlag, Berlin, Germany, 212.

Published
2018-06-29
How to Cite
Kalem, G., & Turhan, Çiğdem. (2018). TECHNOLOGICAL ADVANCEMENTS IN THE HEALTHCARE DOMAIN. International Journal of Scientific Research in Information Systems and Engineering (IJSRISE), 4(1), 57-59. Retrieved from http://www.ijsrise.com/index.php/IJSRISE/article/view/14
Abstract viewed = 0 times
PDF downloaded = 0 times

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.